Alaska Urinary Tract Infection Treatment Toolkit

Urinary Tract Infection Treatment Guidelines
These clinical guidelines are intended to aid in the selection of antimicrobial therapy for patients residing in Alaska who present with a urinary tract infection. Treatment guidelines available for the following Alaska care setting:
- Inpatient Adult UTI Clinical Pathway
- Outpatient Adult UTI Clinical Pathway
- Long term care Adult UTI Clinical Pathway
- Pediatric UTI Clinical Pathway

These guidelines will help Alaska physicians and pharmacists ensure patients receive the right antibiotic at the right time and only when necessary.

UTI Guidelines are available for download on the A2SC website: https://www.ashnha.com/antimicrobial-stewardship/a2sc-resources/uti/

Clinical Pearls for Providers
May 2019 - Urinary Uncertainty: Demystifying Culture Collection in Urinary Tract Infections
October 2019 - Urinary Tract Infections: Treatment and De-escalation
December 2019 - Antibiotic duration in uncomplicated cystitis and outpatient pyelonephritis
Clinical pearls available for download on the A2SC website https://www.ashnha.com/antimicrobial-stewardship/

Educational Webinar: Stewardship in Urinary Tract Infections – Dr. Ben Westley
Webinar recording: https://ashnha.adobeconnect.com/pxzyyd28jhfx/?proto=true

Alaska Antibiogram

Patient education on antibiotic awareness

About Alaska Antimicrobial Stewardship Collaborative

The Alaska Antimicrobial Stewardship Collaborative (A2SC) is an active partnership of hospitals and other health care stakeholders dedicated to developing innovative strategies to ensure appropriate antibiotic use. A2SC’s goal is a simple one: all patients in Alaska will receive the right antibiotic at the right time and only when necessary.

The emergence of antibiotic-resistant bacteria caused by the misuse and overuse of antibiotics is pushing the healthcare industry to re-evaluate how medicine is practiced. Together we will accelerate positive changes to achieve this critical goal.
Alaska Antimicrobial Stewardship Collaborative (A2SC)
Adult INPATIENT Urinary Tract Infection Treatment Guideline (Last Updated 10-2018)

<table>
<thead>
<tr>
<th>Category</th>
<th>Asymptomatic Bacteriuria</th>
<th>Acute Cystitis</th>
<th>Acute Pyelonephritis</th>
<th>Complicated UTI / Catheter-Associated UTI (CAUTI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Symptoms and/or Risk Factors</td>
<td>Isolation of a specific quantity of bacteria in an appropriately collected urine specimen (≥10⁵ cfu/mL or from catheter; ≥10⁴ cfu/mL) from an individual WITHOUT signs or symptoms of infection.</td>
<td>General symptoms: Acute onset dysuria, frequency or urgency</td>
<td>Upper UTI is frequently associated with general symptoms PLUS back/flank pain, fever & chills.</td>
<td>Complicated UTI: Infection in males or in the presence of an anatomic/functional abnormality (e.g. enlarged prostate, calculi, obstruction, catheter or stent, neurogenic bladder, neutropenia).</td>
</tr>
<tr>
<td>Culture & Susceptibility (C&S) Investigation</td>
<td>Routine C&S is NOT indicated in asymptomatic patients unless screening in pregnancy or prior to urologic procedure with compromise of the urothelial mucosa.</td>
<td>If patient requires inpatient admission for acute cystitis, acute pyelonephritis, or complicated/catheter associated cystitis, urine C&S are critical in order to optimize therapy.</td>
<td>Urine cultures should be collected from a midstream void prior to antibiotics or a freshly placed urinary catheter.</td>
<td></td>
</tr>
</tbody>
</table>
| **Recommended Treatment and Duration** | Treatment is **NOT** recommended for patients who fail to meet the below criteria (e.g. pregnancy or those undergoing urologic procedures). | First Line: (select one option)
- **Nitrofurantoin** 100mg PO BID x 5d
- **Cephalexin** 500mg PO BID x 7d
Fluoroquinolone FDA Safety Alert: Disabling & potentially permanent adverse effects outweigh benefit in cystitis. Only use when no other alternatives exist. | First Line:
- **Ceftriaxone** 1g IV Q24H
Second Line:
- **Ciprofloxacin** 400mg IV Q12H
- **Levofloxacin** 750mg IV Q24H
Above recommendations are for empiric antimicrobial therapy, tailor maintenance therapy to C&S report. |
| **Pregnant women:** (select one option)
- **Nitrofurantoin** 100mg PO BID x 5d
Note: contraindicated at 38-42 weeks gestation
- **Cephalexin** 500mg PO BID x 5d
Urologic procedure:
Direct treatment based on pre-procedure screening C&S. | Second Line:
- **Ciprofloxacin** 250mg PO BID x 3d
Note: If at risk for STIs w/ symptoms of urethritis, consider screening for chlamydia. | Duration:
- **Duration may vary based upon final antibiotic selection.**
- **Shorter courses (7 days) are reasonable, if symptoms promptly resolve.**
- **Longer courses (10-14 days) if delayed response, regardless if catheterized or not.**
- **If female and < 65 years of age, a 3-day regimen may be considered for CAUTI with catheter removal.** |

- **Scope of this guideline is limited to immunocompetent adults >18 y/o without history of renal transplant.**
- **Nitrofurantoin** is contraindicated for CrCl < 30mL/min and in pregnancy at term (38-42wks).
- Statewide E. coli susceptibility to **TMP/SMX** is <80% and should be avoided as empiric therapy, but may be considered if confirmed by C&S for complicated UTI or pyelonephritis (2 week duration).
- If patient reports penicillin allergy, inquire about onset and severity of symptoms, as well as prior beta-lactam exposure and update patient medical record. Severe or life-threatening allergic reactions may include: anaphylaxis, angioedema, urticaria, Stevens-Johnson Syndrome (SJS), etc.
- Patients with recurrent UTIs should have empiric therapy selected based upon prior C&S results.
- Chronic antibiotic prophylaxis for most patients with risk factors for recurrent, complicated UTI is **NOT** typically recommended. Risk of resistance outweighs the slight reduction in infection rate.

Note: This guideline is intended to aid in the selection of antimicrobial therapy in adult INPATIENTS residing in Alaska who are diagnosed with a urinary tract infection. It is not intended to replace the clinical judgment of the prescribing provider or to be used for those residing outside the State of Alaska.

The Alaska Antimicrobial Stewardship Collaborative (A2SC) and all participating organizations and individuals assume no duty to correct or update these guidelines. Although efforts are made to include material within these guidelines that is accurate and represents the current best practice, there are no representations or warranties regarding errors, omissions, completeness or accuracy of the information provided. These guidelines are not an attempt to practice medicine or provide specific medical advice and should not be used to make a diagnosis or to replace or overrule a qualified health care provider’s judgment.
Alaska Antimicrobial Stewardship Collaborative (A2SC)
Adult OUTPATIENT Urinary Tract Infection Treatment Guideline (Last Updated 10-2018)

<table>
<thead>
<tr>
<th>Category</th>
<th>Asymptomatic Bacteriuria</th>
<th>Acute Cystitis</th>
<th>Acute Pyelonephritis</th>
<th>Complicated UTI / Catheter-Associated UTI (CAUTI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Symptoms and/or Risk Factors</td>
<td>Isolation of a specific quantity of bacteria in an appropriately collected urine specimen ($\geq 10^5$ cfu/mL or from catheter; $\geq 10^2$ cfu/mL) from an individual WITHOUT signs or symptoms of infection.</td>
<td>General symptoms: Acute onset dysuria, frequency or urgency</td>
<td>Upper UTI is frequently associated with general symptoms PLUS back/flank pain, fever & chills.</td>
<td>Complicated UTI: Infection in males or in the presence of an anatomic/functional abnormality (e.g. enlarged prostate, calculi, obstruction, catheter or stent, neurogenic bladder, neutropenia).</td>
</tr>
<tr>
<td>Culture & Susceptibility (C&S) Investigation</td>
<td>Routine C&S is NOT indicated in asymptomatic patients unless screening in pregnancy or prior to urologic procedure with compromise of the urothelial mucosa.</td>
<td>Routine C&S is NOT indicated unless risk factor(s) for resistance exist; consider if prescribing 2nd line therapy</td>
<td>Urine C&S are critical in order to optimize therapy. Urine cultures should be collected from a midstream void prior to antibiotics or a freshly placed urinary catheter.</td>
<td></td>
</tr>
<tr>
<td>Recommended Treatment and Duration</td>
<td>Treatment is NOT recommended for patients who do not meet the below criteria (e.g. pregnancy or those undergoing urological procedures).</td>
<td>First Line: (select one option)</td>
<td>First Line:</td>
<td>Base empiric treatment on prior culture data. If stable vitals & afebrile, provide definitive therapy when new C&S result.</td>
</tr>
<tr>
<td></td>
<td>Nitrofurantoin 100mg PO BID x 5d</td>
<td>Nitrofurantoin 100mg PO BID x 5d</td>
<td>Ceftriaxone 1g IM/IV x 1 dose</td>
<td>Duration:</td>
</tr>
<tr>
<td></td>
<td>Note: contraindicated at 38-42 weeks gestation</td>
<td>Fluoroquinolone FDA Safety Alert: Disabling & potentially permanent adverse effects outweigh benefit in cystitis. Only use when no other alternatives exist.</td>
<td>If severe or life-threatening beta-lactam allergy consider Gentamicin 5mg/kg IM/IV x 1 dose</td>
<td>• Shorter courses (7 days) are reasonable, if symptoms promptly resolve.</td>
</tr>
<tr>
<td></td>
<td>Cephalexin 500mg PO BID x 5d</td>
<td>Second Line:</td>
<td>Followed by:</td>
<td>Longer courses (10-14 days) if delayed response, regardless if catheterized or not.</td>
</tr>
<tr>
<td></td>
<td>Urologic procedure: Direct treatment based on pre-procedure screening C&S.</td>
<td>Ciprofloxacin 250mg PO BID x 3d</td>
<td>First line:</td>
<td>• If female and < 65 years of age, a 3-day regimen may be considered for CAUTI with catheter removal.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Note: If STI risk w/ symptoms of urethritis, consider treatment for chlamydia.</td>
<td>Second line:</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Ciprofloxacin 500mg PO BID x 7d</td>
<td>Tailor maintenance therapy to C&S report.</td>
</tr>
</tbody>
</table>

- **Scope of this guideline is limited to adults>18 y/o without signs of severe physiologic disturbance. This guideline should not be used for patients who are immunocompromised or kidney transplant recipients.**
- **Nitrofurantoin** is 1st line for most patients without symptoms of pyelonephritis. Contraindicated for CrCl < 30mL/min and in pregnancy at term (38-42wks).
- Statewide *E. coli* susceptibility to TMP/SMX is <80% and should be avoided as empiric therapy, but may be considered if confirmed by C&S for complicated UTI or pyelonephritis (2 week duration).
- For ESBL (Extended Spectrum Beta-lactamase) producing organisms, treat according to reported susceptibility with *nitrofurantoin, TMP/SMX or ciprofloxacin*. If resistant to all tested antibiotics or multiple allergies, consult Infectious Diseases for potential alternatives. ESBL pyelonephritis may require inpatient admission and/or IV antibiotics.
- If patient reports penicillin allergy inquire about onset and severity of symptoms, as well as prior beta-lactam exposure and update patient medical record. *Severe or life-threatening allergic reactions may include: anaphylaxis, angioedema, urticaria, Stevens-Johnson Syndrome (SJS), etc.*
- Antibiotic prophylaxis for most patients with risk factors for recurrent, complicated UTI is NOT typically recommended. Risk of resistance outweighs the slight reduction in infection rate.

Note: This guideline is intended to aid in the selection of antimicrobial therapy in adult OUTPATIENTS residing in Alaska who present with a urinary tract infection. It is not intended to replace the clinical judgment of the prescribing provider or to be used for those residing outside the State of Alaska.

INDICATION FOR URINALYSIS IN NON-CATHETERIZED RESIDENTS – FOLLOW THE LOEB/MCGEER CRITERIA: Acute dysuria alone OR Fever > 100 F AND 1 of the following → New or worsening: urgency, frequency, suprapubic pain, gross hematuria, costovertebral tenderness, urinary incontinence (Note: urinalysis is NOT indicated in non-catheterized patients for work up of worsening mental status changes without other symptoms of UTI)

INDICATION FOR URINALYSIS IN CATHETERIZED RESIDENTS: New onset suprapubic pain or costovertebral tenderness, swelling/tenderness of the testes, epididymis or prostate, or purulent discharge from around the catheter; OR Fever > 100 F, rigors, acute change in mental status, new-onset hypotension, with NO alternate diagnosis or site of infection.

Category

<table>
<thead>
<tr>
<th>Symptom(s) and/or Risk Factors</th>
<th>Acute Cystitis</th>
<th>Acute Pyelonephritis</th>
<th>Complicated UTI/ Catheter-Associated UTI (CAUTI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Presence of bacteria in urine ($\geq 10^5$ cfu/mL or from catheter; $\geq 10^2$ cfu/mL) from an individual WITHOUT signs of infection.</td>
<td>General symptoms: Acute onset dysuria, frequency or urgency</td>
<td>Upper UTI is frequently associated with general symptoms PLUS back/flank pain, fever & chills.</td>
<td>Complicated UTI: Infection in males or in the presence of an anatomic/functional abnormality (e.g. enlarged prostate, calculi, obstruction, catheter or stent, neurogenic bladder, neutropenia).</td>
</tr>
<tr>
<td>NEW</td>
<td>NEW</td>
<td>NEW</td>
<td>NEW</td>
</tr>
</tbody>
</table>

Recommended Treatment and Duration

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nitrofurantoin 100mg PO BID x 5d</td>
<td>First Line: (select one option)</td>
</tr>
<tr>
<td>Note: contraindicated at 38-42 weeks gestation</td>
<td></td>
</tr>
<tr>
<td>Cephalexin 500mg PO BID x 5d</td>
<td>First Line: Nitrofurantoin 100mg PO BID x 5d</td>
</tr>
<tr>
<td>Note: when NOT giving antibiotics, close monitoring is recommended</td>
<td></td>
</tr>
<tr>
<td>Ciprofloxacin 250mg PO BID x 3 days</td>
<td>Second Line: Ciprofloxacin 250mg PO BID x 3 days</td>
</tr>
<tr>
<td>Note: if STD risk w/ symptoms of urethritis, consider treatment for chlamydia.</td>
<td></td>
</tr>
</tbody>
</table>

- **Scope of this guideline is limited to adults>18 y/o without signs of severe physiologic disturbance. This guideline should not be used for patients who are immunocompromised or kidney transplant recipients.**
- **Nitrofurantoin is 1st line for most patients without symptoms of pyelonephritis. Contraindicated for CrCl < 30mL/min and in pregnancy at term (38-42wks).**
- **Statewide E. coli susceptibility to TMP/SMX is <80% and should be avoided as empiric therapy but may be considered if confirmed by C&S for complicated UTI or pyelonephritis (2 week duration).**
- **Risk factors for resistance: Antibiotic exposure within 90 days, hospitalization within 90 days, presence of invasive device(s).**
- **For ESBL (Extended Spectrum Beta-lactamase) producing organism, treat according to reported susceptibility with nitrofurantoin, TMP/SMX or ciprofloxacin. If resistant to all tested antibiotics or multiple allergies, consult Infectious Diseases for potential alternatives. ESBL pyelonephritis may require inpatient admission and/or IV antibiotics.**
- **If patient reports penicillin allergy inquire about onset and severity of symptoms as well as prior beta-lactam exposure and update patient medical record. Severe or life-threatening allergic reactions may include: anaphylaxis, angioedema, urticaria, Stevens-Johnson Syndrome (SJS), etc.**
- **Antibiotic prophylaxis for most patients with risk factors for recurrent, complicated UTI is NOT typically recommended. Risk of resistance outweighs the slight reduction in infection rate.**

Note: This guideline is intended to aid in the selection of antimicrobial therapy in adult LONG TERM CARE residents in Alaska who present with a urinary tract infection. It is not intended to replace the clinical judgment of the prescribing provider or to be used for those residing outside the State of Alaska.

The Alaska Antimicrobial Stewardship Collaborative (A2SC) and all participating organizations and individuals assume no duty to correct or update these guidelines. Although efforts are made to include material within these guidelines that is accurate and represents the current best practice, there are no representations or warranties regarding errors, omissions, completeness or accuracy of the information provided. These guidelines are not an attempt to practice medicine or provide specific medical advice and should not be used to make a diagnosis or to replace or overrule a qualified health care provider’s judgment.
Pediatric FEBRILE Urinary Tract Infection Treatment Guideline (2-24 months)

Symptoms
- Fever
- Poor feeding
- Vomiting
- Irritability
- Strong-smelling urine

Diagnostic Criteria for Acute Pyelonephritis
- Urinalysis results that suggest infection
 - Positive nitrite OR
 - Leukocyte esterase OR
 - Pyuria AND
 - >50,000 CFUs per mL of a uropathogen cultured from a urine specimen obtained through catheterization or SPA

Risk Factors
- Girls
 - Age < 12 months
 - Temp ≥ 39 C
 - Fever ≥ 24 hours
 - Absence of another source of infection
- Boys
 - Temp > 39 C
 - Uncircumcised

Test
- Obtain urine culture PRIOR to starting antibiotics

Treat
- Adjust therapy based on sensitivity testing

Imaging
- Renal/bladder ultrasound for 1st febrile UTI
- VCUG for 2nd febrile UTI or if abnormalities seen on renal/bladder ultrasound

Antibiotic Selection

Ambulatory Empiric Treatment

<table>
<thead>
<tr>
<th>Preferred Treatment</th>
<th>Duration of Therapy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cephalexin 50mg/kg/day PO divided TID or QID (max 4gm/day)</td>
<td>7-10 days</td>
</tr>
<tr>
<td>Sulfamethoxazole/trimethoprim 4-5mg/kg PO BID (trimethoprim component for dosing; max 160mg trimethoprim/dose)</td>
<td></td>
</tr>
</tbody>
</table>

Inpatient Empiric Treatment

| Ceftriaxone 50mg/kg IV Q24H (max 2gm/day) | |
| Gentamicin 5mg/kg/day IV | |

Beta-lactam allergic
- Sulfamethoxazole/trimethoprim
- Gentamicin 5mg/kg/day IV

Pediatric Urinary Tract Infection Treatment Guideline (>24 months)

Symptoms
- Preverbal
 - Fever
 - Abdominal/flank pain
 - Vomiting
 - Poor feeding
 - Lethargy
 - Malodorous urine

- Verbal
 - Frequency
 - Dysuria
 - Hesitancy
 - Urgency
 - Abdominal/flank pain

Risk Factors
- Prior history of UTI
- Review prior organism/susceptibilities for guidance on empiric therapy selection if recurrent UTI
- Fever ≥ 2 days or prolonged ≥ 5 days

Test/Treat
- Obtain urine culture PRIOR to starting antibiotics
- Adjust therapy based on sensitivity testing

Antibiotic Selection

Ambulatory Empiric Treatment

<table>
<thead>
<tr>
<th>Preferred Treatment</th>
<th>Duration of Therapy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cephalexin 50mg/kg/day PO divided TID or QID (max 4gm/day)</td>
<td>7-10 days</td>
</tr>
<tr>
<td>Sulfamethoxazole/trimethoprim 4-5mg/kg PO BID (trimethoprim component for dosing; max 160mg trimethoprim/dose)</td>
<td></td>
</tr>
</tbody>
</table>

Inpatient Empiric Treatment

| Ceftriaxone 50mg/kg IV Q24H (max 2gm/day) | |
| Gentamicin 5mg/kg/day IV | |

Beta-lactam allergic
- Sulfamethoxazole/trimethoprim
- Gentamicin 5mg/kg/day IV

Adopted Nov. 2018 - Approved 2018

The Alaska Antimicrobial Stewardship Collaborative (A2SC) and all participating organizations and individuals assume no duty to correct or update these guidelines. Although efforts are made to include material within these guidelines that is accurate and represents the current best practice, there are no representations or warranties regarding errors, omissions, completeness or accuracy of the information provided. These guidelines are not an attempt to practice medicine or provide specific medical advice and should not be used to make a diagnosis or to replace or overrule a qualified health care provider's judgment.
Obtaining urine culture from patients with various forms of UTI can represent an important step in providing definitive therapy. In others, cultures may not be indicated and, in fact, may lead to inappropriate treatment. Knowing which clinical syndromes require urine culture and how to navigate typical urinalysis (UA) and urine culture order variations will assist the clinician in providing superior care to patients.

General Guidelines for Appropriate Urine Culturing:

When obtaining urine cultures it is important to collect culture specimens in a manner that minimizes the potential for culture contamination. Additionally, urine cultures should be obtained prior to the administration of antibiotics in order to maximize the diagnostic yield of the culture.1-3

Urine cultures in non-catheterized patients should be collected from a clean-catch, midstream void.1,2 When urine cultures are indicated in a catheterized patient and the catheter has been in place for longer than 2 weeks, the catheter should be changed prior to obtaining the culture with the collected specimen coming from the freshly placed catheter. If the catheter can be discontinued at the time the culture is indicated then the specimen should be obtained via a clean-catch, midstream void.3

Asymptomatic Bacteriuria (ASB):

The Infectious Diseases Society of America (IDSA) defines ASB as “isolation of a specified quantitative count of bacteria in an appropriately collected urine specimen obtained from a person without symptoms or signs referable to urinary infection”.1 The only two patient populations which have shown benefit from antimicrobial management of ASB are pregnant patients and those scheduled to undergo urologic procedures that will compromise the urogenital mucosa. In patients with the above two indications routine screening is appropriate with the use of a urine culture. When screening for ASB the UA with reflex culture should NOT be used given that screening for pyuria has a low sensitivity for the identification of bacteriuria. Use of the UA with reflex culture order may result in cultures not being performed due to a lack of pyuria and, therefore, lack of identification of bacteriuric patients. If the patient does not have one of the above listed indications for screening and treatment then no routine screening or culturing of the urine is recommended.1

Acute Cystitis and Pyelonephritis:

Acute bacterial cystitis implies the patient is acutely experiencing urinary symptoms; however, is another condition which may not always require obtaining urine culture to guide management.2 In the outpatient care setting, in women without risk factors for resistant pathogens (i.e. antibiotic exposure/hospitalization in the previous 90 days or previous infection/colonization with multidrug resistant bacteria) empiric management can be initiated using agents with adequate local bacterial susceptibility rates. In outpatient complicated cystitis (i.e. infection in males, those with urogenital structural abnormalities, or recurrence), inpatient acute cystitis (complicated or uncomplicated), or acute pyelonephritis appropriate obtainment of urine cultures and antimicrobial sensitivities is critical to the management of antimicrobial therapy. In these cases providers should consider utilization of an
order for **UA with urine culture.** The UA with reflex culture if indicated is NOT recommended in this scenario as a culture is likely indicated due to the presence of symptoms regardless of UA findings.² In the cases where the patient is unable to provide information regarding symptoms and cystitis or pyelonephritis is possible (i.e. fever or sepsis of unknown origin), it may be reasonable to utilize the UA with reflex culture if indicated order.

Catheter Associated UTI:

Patients with urinary catheters are at a higher risk for the development of UTI. Urinalysis and/or urine cultures should ONLY be collected in catheterized patients when symptom(s) are present. Conversely, it is important to NOT perform urinalysis and/or urine cultures when the only symptoms present are malodorous urine, cloudy appearance, or change in color.³ In most cases, if the catheter is functioning properly and the patient does NOT have urinary symptoms (i.e. urgency, suprapubic tenderness, or back/flank pain, or fever), then UA and culture will only identify ASB/pyuria related to catheter colonization. This is typically clinically insignificant and should not be empirically treated with antibiotics. When high suspicion of catheter associated urinary tract infection exists due to the presence of symptoms a **UA with urine culture** should be utilized. Similar to non-catheterized patients, in catheterized patients with fever or sepsis of unknown origin it is reasonable to utilize the UA with reflex culture if indicated order.

For more information on the diagnosis, testing, and treatment of urinary tract infections please refer to the Alaska Antimicrobial Stewardship Collaborative’s statewide UTI guidelines for inpatients, outpatients, and those residing in long term care facilities (attached).

References:

Urinary Tract Infections: Treatment and De-escalation

The previous article “Urinary Uncertainty: Desmystifying Culture Collection in Urinary Tract Infections (UTI)” discussed the antimicrobial stewardship principles of diagnostic testing for UTIs. As a follow-up in the series focusing on UTIs, this article will discuss antimicrobial stewardship principles of treatment and de-escalation which include a follow-up assessment of the continued need for antibiotic therapy, recommendations for antibiotic therapy choices, balancing treatment efficacy and severity of illness, and using the results of cultures and diagnostic tests to de-escalate to the lowest risk, most effective regimen for the patient.1

Asymptomatic Bacteriuria (ASB):

Updated practice guidelines from 2019 define ASB as the “presence of 1 or more species of bacteria growing in the urine at specified quantitative counts (> 10⁵ CFU/mL), irrespective of the presence of pyuria, in the absence of signs or symptoms attributable to urinary tract infection (UTI).” It is a common finding particularly in elderly persons in long term care facilities, where it can occur in up to 50% of residents, and persons with long term indwelling catheters (100%).2

ASB guidelines direct that ASB should NOT be screened for and should NOT be treated in the majority of patients. The two exceptions for which screening and treatment for ASB are indicated are 1) pregnant women and 2) patients undergoing endoscopic urologic procedures associated with mucosal trauma.2 It is recommended that pregnant women receive 4-7 days of antibiotic treatment, using the shortest effective course depending on the antibiotic selected (see AZSC guidelines for guidance on possible agents).2 Patients undergoing urologic procedures should receive a short course (1 or 2 doses) initiated 30-60 minutes prior to the procedure. Selection of an antibiotic in this case would be directed therapy based on pre- procedure screening urine culture and susceptibility results.2

Inappropriate treatment of ASB with antibiotics has been a significant driver of antibiotic resistance in addition to placing patients at risk for adverse events such as Clostridioides difficile infection and adverse drug effects.2 When presented with results from a urinalysis and urine culture, the clinician must take into context the original indication for performing the test. If no localizing symptoms referable to the urinary tract were present, presence of bacteria in urine culture would not indicate infection but asymptomatic bacteriuria and should be labeled as such rather than as infection. Bacteriuria and delirium are commonly found together in older adults and causal relationships can be erroneously made. Delirium, falls or confusion by themselves, without localizing genitourinary symptoms, are not symptoms associated with UTIs. Mental status changes and ASB is not an indication for antibiotic treatment. However, if patients have signs and/or symptoms of systemic infection antibiotic therapy would be warranted.2
Acute Cystitis and Pyelonephritis

Urine cultures are not typically required in the outpatient care setting for uncomplicated acute cystitis in women without risk factors for resistant pathogens. In those cases, empiric treatment options recommended by the A2SC guidelines include nitrofurantoin (100mg twice daily for 5 days) or cephalexin (500mg twice daily for 7 days). Bactrim, endorsed by the IDSA for uncomplicated cystitis, is generally not recommended as an empiric choice in the State of Alaska at this time due to *E. coli* resistance rates exceeding 20%; however, this would be an appropriate choice if susceptibilities to Bactrim were known or local susceptibilities varied from those outlined by the State of Alaska antibiogram. The cost and availability for fosfomycin somewhat limit its use, but it is also endorsed by IDSA guidelines and remains an option for cystitis when available. Fluoroquinolones are effective in 3 day regimens but are not preferred for uncomplicated cystitis and should only be used if the first line options are not appropriate. Fluoroquinolones have a high propensity for collateral damage (selection of drug resistant organisms) and their adverse effects limit their use in uncomplicated cystitis.

For those patients with acute pyelonephritis, ideally cultures should have been obtained prior to the initiation of antibiotic therapy. Empiric treatment can begin with an extended spectrum cephalosporin (such as ceftriaxone 1gm), a fluoroquinolone (if resistance rates of *E. coli* do not exceed 10%), or a consolidated 24-h dose of an aminoglycoside. Other options including extended-spectrum penicillins or carbapenems may be selected depending on local resistance data. Once cultures and susceptibilities are available, therapy should be reviewed and de-escalated to the most effective, narrowest spectrum, safest regimen taking into consideration patient specific factors (allergies, drug interactions/contraindications, compliance etc). Recommended regimens (based on known susceptibilities) include fluoroquinolones (ciprofloxacin 7 days, levofloxacin 5 days), TMP/SMX (10-14 days) and cephalosporins (10-14 days) and switch from IV to PO therapy if this has not already been initiated. Of note, nitrofurantoin and fosfomycin are not indicated for pyelonephritis or perinephric abscesses and are inappropriate choices as step down therapy for pyelonephritis.

Complicated UTI

Complicated UTI encompasses a variety of syndromes including catheter-associated UTI (CAUTI), UTI in males, UTI in the presence of urologic abnormalities and UTI during pregnancy. In addition to antibiotic therapy, source control measures may need to be undertaken. Empiric therapy should be based on prior culture data if available, how ill the patient appears and whether the symptoms are more suggestive of a lower urinary tract infection (cystitis) versus an upper urinary tract infection (pyelonephritis). Definitive therapy will be dependent on culture and susceptibility results. Shorter courses of therapy (7 days) are reasonable if symptoms promptly resolve and longer courses (10-14 days) if there is a delayed response to therapy. Oral cephalosporins, fluoroquinolone and TMP/SMX can all be used as options for oral step down therapy, factoring in the time on IV therapy when determining total duration. If bacteremia is present, the selection of an agent with high oral bioavailability such as fluoroquinolones and TMP/SMX may be preferred.

For more information on the diagnosis, testing, and treatment of urinary tract infections, please refer to the Alaska Antimicrobial Stewardship Collaborative’s statewide UTI guidelines.

Antibiotic duration in uncomplicated cystitis and outpatient pyelonephritis

There is growing evidence supporting shorter durations of antibiotic therapy in uncomplicated cystitis and pyelonephritis to minimize antibiotic resistance, adverse events and infection reoccurrence.

Data from the early 2000’s were incorporated in the 2011 Infectious Disease Society of America (IDSA) guidelines that highlighted >90% cure rates with nitrofurantoin x 5 days, fluoroquinolones x 3 days, and beta-lactams x 3-5 days in females with uncomplicated cystitis. In pyelonephritis, these guidelines also identified fluoroquinolones x 5-7 days being effective compared traditional 14 day antibiotic courses that were associated with greater rates of resistance, Clostridioides difficile (C diff) infections, and increased risk for serious adverse events.1 Newer data has since confirmed these recommendations in pyelonephritis and provided further insight into appropriate antibiotic durations in unique situations not previously addressed, including women with diabetes and men with uncomplicated cystitis.

Regarding pyelonephritis, two major studies, published since the 2011 guidelines, have identified shorter durations (5-7 days) of fluoroquinolones as non-inferior to longer durations (10-14 days) in non-elderly women. One prospective, multi-site randomized, double blind, non-inferiority trial compared oral ciprofloxacin 500 mg twice daily for 7 versus 14 days in women with community acquired, acute pyelonephritis. The majority of urinary isolates revealed Escherichia coli (E. coli) and 27% of participants with positive blood cultures and 17% initially receiving intravenous doses of ciprofloxacin. Results from this study found clinical cure in 97% of patients treated for 7 days versus 96% treated for 14 days (-0.9% difference, 90% CI -6.5 to 4.8, p=0.004) and long term cure rates were equal for both study groups (-0.3% difference, 90% CI -7.4 to 7.2, p = 0.015).2 The other study tested non-inferiority of fluoroquinolones in acute, community acquired pyelonephritis with 5 days versus 10 days of oral levofloxacin 500 mg daily or ofloxacin 200 mg twice daily. This study was prospective, multi-site, randomized, open-label and included 68 female patients with confirmed pyelonephritis, 97.7% with urinary isolates of E coli and 3.4% with positive blood cultures. This study found similar cure rates at day 10 and day 30 between both groups (93% versus 97.7% at day 10, p=1.00; and 100% for both groups at day 30, p=1.00).3 Results from these two trials are consistent with past literature, including key trials, that also enrolled male participants, finding shorter antibiotic courses non-inferior to longer courses in complicated urinary tract infections and pyelonephritis.4,5

Furthermore, unique populations have been studied and found to benefit from shorter antibiotic durations in uncomplicated cystitis. One large, retrospective study conducted at Baylor Medical School in 2017, identified a trend for longer antibiotic durations in women with cystitis and comorbid diabetes that ironically correlated to an increased risk for early cystitis reoccurrence when treatment durations were greater than 5 days compared to 5 days or less (OR 2.17, 95% CI 1.07-4.41).6 Similarly, a recent study found 7 day antibiotic courses sufficient in men with uncomplicated cystitis and found more than double infection reoccurrence rates with longer antibiotic durations (>7days) in a subgroup of patients with fewer complications (i.e. no anatomical abnormalities, catheterization, or immunosuppression; OR 2.62, 95% CI 1.04-6.61).7 This observational study has prompted a randomized, controlled trial comparing 7 versus 14 day antibiotic therapy for urinary tract infections in men that is currently
underway and is consistent with other previous trials finding antibiotic durations longer than 7 days do not provide a protective benefit in infection reoccurrence rates and fluoroquinolone durations of 5 days being as effective as 10 days. It has been suggested that the longer durations may alter normal urogenital flora thus predisposing patients to unnecessary treatment failure as observed in these trials.

Shorter antibiotic durations have been incorporated into the A2SC’s Alaska specific Urinary Tract Infection Treatment Guidelines published in November of 2018. These recommended durations reflect the latest literature that supports shorter durations of therapy to prevent collateral damage and treatment failure (Table 1) in conjunction with antibiotic susceptibility specific to Alaska.

<table>
<thead>
<tr>
<th>Cystitis</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Nitrofurantoin</td>
<td>5 days</td>
</tr>
<tr>
<td>or Cephalexin</td>
<td>7 days</td>
</tr>
<tr>
<td>or Ciprofloxacin (second line)</td>
<td>3 days</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Pyelonephritis</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Ceftriaxone and</td>
<td>1 dose</td>
</tr>
<tr>
<td>Cephalexin</td>
<td>10-14 days</td>
</tr>
<tr>
<td>or Ciprofloxacin (second line)</td>
<td>7 days</td>
</tr>
</tbody>
</table>

Table 1: Antibiotic durations for urinary tract infections

References

A2SC Patient Education Resources

Antibiotic awareness posters for providers

A recommended strategy is to put posters in exam rooms or waiting rooms with physician pictures and an antimicrobial stewardship message that “we promise not to give you antibiotics if you don’t need them because we care about your health”

Mountain Pacific Quality Health will provide posters co-branded with hospital or physician logo, name and photo.

Order on-line to receive custom, laminated copies of the poster.

A Commitment to Our Patients About Antibiotics

Poster Order Form - https://www.mpqhf.org/QIO/quality-improvement-tools-resources/antibiotic-stewardship/#commitmenttoparents

CDC Be Antibiotics Aware - national effort to help fight antibiotic resistance and improve antibiotic prescribing and use.
https://www.cdc.gov/antibiotic-use/index.html

Patient education on antibiotic awareness

This Alaska specific newsletter focuses on antibiotic awareness and UTI.

About Alaska Antimicrobial Stewardship Collaborative

The Alaska Antimicrobial Stewardship Collaborative (A2SC) is an active partnership of hospitals and other health care stakeholders dedicated to developing innovative strategies to ensure appropriate antibiotic use. A2SC’s goal is a simple one: all patients in Alaska will receive the right antibiotic at the right time and only when necessary.

The emergence of antibiotic-resistant bacteria caused by the misuse and overuse of antibiotics is pushing the healthcare industry to re-evaluate how medicine is practiced. Together we will accelerate positive changes to achieve this critical goal.
Modern Antibiotic History

Modern antibiotics have been around for a relatively short time frame. In 1928, Sir Alexander Fleming accidentally discovered the first antibiotic, penicillin. He noticed that a bacterial culture was not growing in an area that had been contaminated with mold. This mold was *Penicillium notatum*. Commercial penicillin was not developed until the 1940s. During one of his speeches in the 1940s, Fleming warned of the possibility of antibiotic resistance if this new antibiotic was used inappropriately.

Throughout the next three decades, a majority of the antibiotics we have today were developed. No new antibiotics were discovered between the late 1980’s and the early 2000s. During this lull in antibiotic development, antibiotic resistance started becoming more prevalent.

What is Antibiotic Resistance?

Some bacteria, when exposed to antibiotics, have the ability to change and become resistant. This usually occurs if the dose is too low, antibiotics are used too often, or the wrong antibiotics are being used. When resistance develops, bacteria can no longer be killed by certain antibiotics, ultimately resulting in infections that are harder to treat or that cannot be treated. These infections can spread to other people, resulting in widespread resistance.

According to the CDC, two million people in the US are diagnosed with antibiotic resistant infections each year. Of these two million people, at least 23,000 die. This is why antibiotic resistance is a growing public health threat and antibiotics need to be used appropriately. Without antibiotics, we would be unable to treat bacterial infections.

Do I Need Antibiotics?

Many infections, especially those caused by viruses, do not require antibiotics. If you have the common cold, the flu, or a runny nose, even if the mucus is green or yellow, antibiotics will not help you feel better. In fact, taking them may harm you.

When are Antibiotics Necessary?

Sometimes, antibiotics are necessary to treat a bacterial infection and the benefits outweigh the risks of taking an antibiotic. The following are common infections that require antibiotics:

- Pneumonia
- Strep Throat
- Urinary Tract Infections
- Whooping Cough
- Some* cases of sinus infections or bronchitis

*not all sinus infections or cases of bronchitis require antibiotics to treat. Some will resolve on their own.

Do I have a UTI?

It is common to go to the doctor or hospital for an illness and be asked to provide a urine sample. Your urine can sometimes give the doctor clues to what is wrong. However, just because there is bacteria in your urine, does not mean you have an infection. Often bacteria can live in your bladder without causing an infection. If you are told you have a urinary tract infection but have NOT had symptoms such as burning with urination, having to urinate more often, the urge to urinate when your bladder is empty, or pain in your lower abdomen or low back, let your doctor know.

There are of course exceptions, such as if you are pregnant or having certain bladder surgeries, so do not be afraid to double check with your doctor that antibiotics are really necessary.
The Alaska Antimicrobial Stewardship Collaborative is an active partnership of acute care and long-term care hospitals dedicated to developing innovative strategies to ensure appropriate antibiotic use. A2SC’s goal is a simple one: all patients in Alaska will receive the right antibiotic at the right time and only when necessary. While at one time, antibiotics revolutionized the practice of medicine by providing a rapid cure to many illnesses that were once fatal, those days may soon be gone. The emergence of antibiotic-resistant bacteria caused by the misuse and overuse of antibiotics is pushing the healthcare industry to re-evaluate how medicine is practiced. Together we will accelerate positive changes to achieve this critical goal.
The following tables show the proportion of isolates of various bacterial species that tested susceptible to various antibiotics during 2017. These data were aggregated from the antibiograms produced by Alaska hospitals in order to create aggregate regional resistance pattern summaries. These antibiograms can be helpful for health care providers in selecting appropriate “presumptive” antimicrobial therapy for their patients until specific individual laboratory test results are available. They can also be helpful for determining antibiotic stewardship priorities within hospitals and emerging resistance patterns in a broader service area.

- **Methodology:** Individual hospitals prepared their own facility antibiograms, which were shared with the Alaska Section of Epidemiology. Aggregated susceptibility percentages were calculated as the proportion of all tested isolates for the region that were susceptible. Values are only reported when more than one facility provided data for the given species-antibiotic combination. Intrinsic resistance is indicated with an “R”, following the guidance of CLSI document M100-S24.

- **Multi-Drug Resistant Organisms of Note:**
 - Vancomycin-resistant *Staphylococcus aureus* (VRSA): no cases of VRSA have ever been reported in Alaska. VRSA is reportable to the Alaska Section of Epidemiology.
 - Carbapenem-resistant Enterobacteriaceae (CRE): there were 3 cases of CRE reported in Alaska in 2018. One was a KPC-producing *K. pneumoniae*.

- **Legend:**
 - The top value in each square is the percent of isolates of that species that tested susceptible to that antibiotic.
 - The lower value in each square indicates the number of tested isolates for that bacteria-antibiotic combination.
 - “R” indicates intrinsic resistance to that antibiotic, while “S” indicates definitional susceptibility.
 - “NED” indicates that there was Not Enough Data to report the value: either only one facility reported data for that drug-bug combination or <30 isolates were tested.

- **Limitations:** Individual facilities often use different methods to test for antimicrobial susceptibility, different methods to build their antibiograms, and different antibiotics in their pharmacies. These factors limit interpretation of these data. Additionally, antimicrobial susceptibility testing done in the laboratory does not always predict how effective that drug will be when used to treat a patient. Data are not stratified by infection site, which influences antibiotic choice and effectiveness.

- **Contributing Facilities:** Thanks to all the hospitals in Alaska for participating in this project to the extent of their ability. These statewide data include all the hospitals used in the Regional Antibioticograms, plus Fairbanks Memorial Hospital, Yukon-Kuskoikwim Delta Regional Hospital, and Norton Sound Regional Medical Center.

Important note: This year, a number of facilities did not make antibiograms. The decrease in data means there will not be regional antibiograms for the Southwest or Northern Regions; there is only one hospital in the Interior. This year’s antibiograms are likely to differ from previous years due to the change in participation.

For more information and the methods used for the analyses, please see the “Regional Antibiogram Project — Alaska, 2014–2015” Epidemiology Bulletin.
Statewide data

Species	Amoxicillin+ clavulanic acid	Ampicillin	Ampicillin+Sulbactam	Cefalotin	Cefazolin	Cefuroxime	Ceftriaxone	Cefidoxime	Cefpodoxime	Cefepine	Cefixime	Ciprofloxacin	Levofloxacin	Gentamycin	Tobramycin	Amikacin	Ertapenem	Imipenem	Meropenem	Cefepine	Trimeth Sulf	Tetracycline	Nitrofurantoin	Norfloxacin	Metronidazol	
------------------------------	-------------------------------	------------	----------------------	-----------	-----------	------------	-------------	------------	-------------	----------	----------	---------------	--------------	-------------	------------	----------	-----------	----------	----------	---------	------------	-------------	-----------------	----------------	---------------	
Citrobacter freundii	R	R	R	92%	R	R	88%	99%	NED	R	R	77%	100%	96%	100%	99%	97%	97%	96%	R	100%	91%	NED	92%	91%	
Klebsiella aerogenes	R	R	R	80%	R	R	80%	100%	71%	R	R	71%	100%	100%	100%	98%	98%	98%	98%	R	100%	98%	NED	99%	98%	
Enterobacter cloacae	R	R	R	80%	R	R	80%	98%	78%	R	R	80%	100%	99%	100%	98%	99%	99%	99%	R	100%	94%	NED	96%	93%	
Escherichia coli	87%	65%	75%	80%	96%	97%	NED	176%	94%	94%	95%	99%	99%	99%	100%	97%	97%	97%	97%	R	100%	NED	100%	94%	81%	
Klebsiella oxytoca	97%	68%	68%	97%	96%	97%	NED	176%	94%	94%	95%	99%	99%	99%	100%	97%	97%	97%	97%	R	100%	NED	100%	94%	81%	
Klebsiella pneumoniae	98%	R	91%	98%	92%	97%	98%	98%	98%	98%	99%	99%	99%	99%	100%	97%	97%	97%	97%	R	100%	NED	100%	94%	81%	
Proteus mirabilis	97%	83%	90%	99%	97%	98%	97%	98%	98%	98%	99%	99%	99%	99%	100%	97%	97%	97%	97%	R	100%	NED	100%	94%	81%	
Pseudomonas aeruginosa	R	R	R	97%	94%	95%	98%	93%	97%	R	R	93%	94%	94%	100%	97%	97%	97%	97%	R	100%	NED	100%	94%	81%	
Serratia marcescens	R	R	R	97%	94%	95%	98%	93%	97%	R	R	93%	94%	94%	100%	97%	97%	97%	97%	R	100%	NED	100%	94%	81%	

2018 State Antibiotics - SURVEILLANCE DATA ONLY
2018 Alaska State Antibiogram: Anchorage-Mat-Su Region

The following tables show the proportion of isolates of various bacterial species that tested susceptible to various antibiotics during 2017. These data were aggregated from the antibiograms produced by Alaska hospitals in order to create aggregate regional resistance pattern summaries. These antibiograms can be helpful for health care providers in selecting appropriate “presumptive” antimicrobial therapy for their patients until specific individual laboratory test results are available. They can also be helpful for determining antibiotic stewardship priorities within hospitals and emerging resistance patterns in a broader service area.

- **Methodology:** Individual hospitals prepared their own facility antibiograms, which were shared with the Alaska Section of Epidemiology. Aggregated susceptibility percentages were calculated as the proportion of all tested isolates for the region that were susceptible. Values are only reported when more than one facility provided data for the given species-antibiotic combination. Intrinsic resistance is indicated with an “R”, following the guidance of CLSI document M100-S24.

- **Multi-Drug Resistant Organisms of Note:**
 - Vancomycin-resistant *Staphylococcus aureus* (VRSA): no cases of VRSA have ever been reported in Alaska. VRSA is reportable to the Alaska Section of Epidemiology.
 - Carbapenem-resistant Enterobacteriaceae (CRE): there were 2 cases of CRE in Anchorage/Mat-Su residents in 2018. One was a KPC-producing *K. pneumoniae*.

- **Legend:**
 - The top value in each square is the percent of isolates of that species that tested susceptible to that antibiotic.
 - The lower value in each square indicates the number of tested isolates for that bacteria-antibiotic combination.
 - “R” indicates intrinsic resistance to that antibiotic, while “S” indicates definitional susceptibility.
 - “NED” indicates that there was Not Enough Data to report the value: either only one facility reported data for that drug-bug combination or <30 isolates were tested.

- **Limitations:** Individual facilities often use different methods to test for antimicrobial susceptibility, different methods to build their antibiograms, and different antibiotics in their pharmacies. These factors limit interpretation of these data. Additionally, antimicrobial susceptibility testing done in the laboratory does not always predict how effective that drug will be when used to treat a patient. Data are not stratified by infection site, which influences antibiotic choice and effectiveness.

- **Contributing Facilities:** Thanks to the following facilities for providing data in support of this project:
 - Alaska Native Medical Center
 - Alaska Regional Hospital
 - Mat-Su Regional Medical Center
 - JBER DOD/VA Hospital

2018 State Antibiograms- SURVEILLANCE DATA ONLY
<table>
<thead>
<tr>
<th>Species</th>
<th>Penicillin</th>
<th>Ampicillin</th>
<th>Oxacillin</th>
<th>Cefazolin</th>
<th>Cefotaxime</th>
<th>Ciprofloxacin</th>
<th>Levofoxacin</th>
<th>Clindamycin</th>
<th>Erythromycin</th>
<th>Vancomycin</th>
<th>Gentamycin</th>
<th>Gent Syn</th>
<th>trimethoprim-sulfamethoxazole</th>
<th>Linezolid</th>
<th>Tetracycline</th>
<th>Nitrofurantoin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Staphylococcus aureus</td>
<td>4% (1725)</td>
<td>61% (2317)</td>
<td>61% (1712)</td>
<td>64% (2317)</td>
<td>66% (1871)</td>
<td>82% (1871)</td>
<td>46% (1871)</td>
<td>99% (2317)</td>
<td>99% (1871)</td>
<td>99% (2317)</td>
<td>99% (1871)</td>
<td>99% (2317)</td>
<td>96% (1871)</td>
<td>99% (2317)</td>
<td>96% (1871)</td>
<td>99% (2317)</td>
</tr>
<tr>
<td>MSSA</td>
<td>7% (1069)</td>
<td>S (1028)</td>
<td>100%</td>
<td>89% (1278)</td>
<td>91% (1028)</td>
<td>88% (1028)</td>
<td>69% (1028)</td>
<td>100%</td>
<td>99% (1028)</td>
<td>99% (1028)</td>
<td>99% (1278)</td>
<td>99% (1278)</td>
<td>97% (1028)</td>
<td>100%</td>
<td>(1278)</td>
<td></td>
</tr>
<tr>
<td>MRSA</td>
<td>NED</td>
<td>R (932)</td>
<td>26% (932)</td>
<td>28% (736)</td>
<td>73% (736)</td>
<td>10% (736)</td>
<td>99% (932)</td>
<td>98% (932)</td>
<td>98% (932)</td>
<td>98% (932)</td>
<td>NED</td>
<td>95% (932)</td>
<td>100%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coag-negative Staphylococcus</td>
<td>12% (268)</td>
<td>54% (326)</td>
<td>54% (157)</td>
<td>71% (326)</td>
<td>72% (295)</td>
<td>64% (295)</td>
<td>41% (295)</td>
<td>99% (326)</td>
<td>93% (326)</td>
<td>74% (326)</td>
<td>NED</td>
<td>84% (326)</td>
<td>100%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Enterococcus faecalis</td>
<td>99% (384)</td>
<td>99% (494)</td>
<td>R (416)</td>
<td>94% (426)</td>
<td>94% (426)</td>
<td>8% (426)</td>
<td>99% (426)</td>
<td>R (83% (328)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Streptococcus pneumoniae (all)</td>
<td></td>
<td>93% (41)</td>
<td>NED</td>
<td>78% (41)</td>
<td>100% (41)</td>
<td></td>
</tr>
<tr>
<td>S. pneumoniae - non-CSF</td>
<td>98% (238)</td>
<td>99% (228)</td>
<td>99% (199)</td>
<td></td>
</tr>
<tr>
<td>S pneumoniae - meningitis</td>
<td>80% (238)</td>
<td>94% (228)</td>
<td>95% (199)</td>
<td></td>
</tr>
</tbody>
</table>

2018 State Antibiotics- SURVEILLANCE DATA ONLY
Anchorage+ Mat-Su Region

Species	Amoxicillin+clavulanic acid	Ampicillin	Ampicillin+Sulbactam	Piperacillin/Tazobactam	Cefazolin	Ceftriaxone	Ceftazidime	Ceftazime	Cefepime	Ceftazime	Aztreonam	Gentamicin	Tobramycin	Amikacin	Imipenem	Meropenem	Ciprofloxacin	Levofloxacin	Trimeth+ Sulfa	Tetracycline	Nitrofurantoin																		
Citrobacter freundii	R	R	R	89%	(79)	R	R	87%	(79)	100%	NED	77%	(43)	97%	(79)	96%	100%	(68)	NED	97%	(79)	95%	(43)	95%	(79)	NED	97%	(79)											
Enterobacter spp.	R	R	R	87%	(112)	R	R	84%	(112)	85%	(112)	NED	NED	NED	97%	(112)	NED	99%	NED	99%	(112)	NED	99%	(112)	94%	(112)	NED	42%	(112)										
Enterobacter cloacae	R	R	R	79%	(134)	R	R	75%	(134)	75%	(81)	98%	(134)	77%	(81)	79%	99%	(134)	99%	(134)	100%	(81)	NED	99%	(134)	99%	(134)	NED	94%	(134)	93%	(134)							
Escherichia coli	87%	(2793)	58%	(3628)	63%	(4048)	98%	(4048)	85%	(3213)	96%	(4048)	98%	(3219)	94%	(2384)	93%	(4048)	93%	(4048)	95%	(4048)	95%	(2793)	100%	(2799)	100%	(2793)	86%	(4048)	85%	(3213)	81%	(4048)	98%	(2793)			
Klebsiella pneumoniae	97%	(310)	R	90%	(494)	98%	(494)	96%	(494)	89%	(409)	97%	(494)	98%	(494)	98%	(494)	98%	(395)	100%	(294)	100%	(294)	96%	(494)	97%	(308)	95%	(310)	85%	(393)								
Proteus mirabilis	97%	(150)	84%	(191)	87%	(236)	99%	(236)	97%	(195)	98%	(191)	99%	(192)	98%	(195)	NED	100%	(151)	93%	(236)	94%	(236)	100%	(147)	100%	(150)	88%	(236)	86%	(195)								
Pseudomonas aeruginosa	R	R	R	95%	(317)	R	92%	(232)	93%	(228)	R	NED	94%	(317)	97%	(317)	98%	(178)	93%	(178)	95%	(228)	90%	(317)	90%	(282)	R	R	R										
Stenotrophomonas maltophilia											45%	(31)												100%	(31)	97%	(31)	NED											
2018 Alaska State Antibiogram: Gulf Coast Region

The following tables show the proportion of isolates of various bacterial species that tested susceptible to various antibiotics during 2017. These data were aggregated from the antibiograms produced by Alaska hospitals in order to create aggregate regional resistance pattern summaries. These antibiograms can be helpful for health care providers in selecting appropriate “presumptive” antimicrobial therapy for their patients until specific individual laboratory test results are available. They can also be helpful for determining antibiotic stewardship priorities within hospitals and emerging resistance patterns in a broader service area.

- **Methodology:** Individual hospitals prepared their own facility antibiograms, which were shared with the Alaska Section of Epidemiology. Aggregated susceptibility percentages were calculated as the proportion of all tested isolates for the region that were susceptible. Values are only reported when more than one facility provided data for the given species-antibiotic combination. Intrinsic resistance is indicated with an “R”, following the guidance of CLSI document M100-S24.

- **Multi-Drug Resistant Organisms of Note:**
 - Vancomycin-resistant *Staphylococcus aureus* (VRSA): no cases of VRSA have ever been reported in Alaska. VRSA is reportable to the Alaska Section of Epidemiology.
 - Carbapenem-resistant Enterobacteriaceae (CRE): there were no cases of CRE in a Gulf Coast resident in 2018.

- **Legend:**
 - The top value in each square is the percent of isolates of that species that tested susceptible to that antibiotic.
 - The lower value in each square indicates the number of tested isolates for that bacteria-antibiotic combination.
 - “R” indicates intrinsic resistance to that antibiotic, while “S” indicates definitional susceptibility.
 - “NED” indicates that there was Not Enough Data to report the value: either only one facility reported data for that drug-bug combination or <30 isolates were tested.

- **Limitations:** Individual facilities often use different methods to test for antimicrobial susceptibility, different methods to build their antibiograms, and different antibiotics in their pharmacies. These factors limit interpretation of these data. Additionally, antimicrobial susceptibility testing done in the laboratory does not always predict how effective that drug will be when used to treat a patient. Data are not stratified by infection site, which influences antibiotic choice and effectiveness.

- **Contributing Facilities:** Thanks to the following facilities for providing data in support of this project:
 - Central Peninsula Hospital
 - South Peninsula Hospital
Gulf Coast Region data

<table>
<thead>
<tr>
<th>Species</th>
<th>Penicillin</th>
<th>Ampicillin</th>
<th>Cefoxitin</th>
<th>Amoxicillin-sulbactam</th>
<th>Ceftazidime</th>
<th>Levofloxacin</th>
<th>Daptomycin</th>
<th>Clindamycin</th>
<th>Erythromycin</th>
<th>Vancomycin</th>
<th>Gentamicin</th>
<th>Trimethoprim-sulfamethoxazole</th>
<th>Linezolid</th>
<th>Tetracycline</th>
<th>Nitrofurantoin</th>
<th>Rifampin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Staphylococcus aureus</td>
<td>12% (352)</td>
<td>NED</td>
<td>64% (352)</td>
<td>NED</td>
<td>NED</td>
<td>59% (352)</td>
<td>NED</td>
<td>74% (352)</td>
<td>42% (352)</td>
<td>100% (352)</td>
<td>NED</td>
<td>99% (352)</td>
<td>99% (352)</td>
<td>100% (352)</td>
<td>99% (352)</td>
<td>99% (352)</td>
</tr>
<tr>
<td>MSSA</td>
<td>19% (224)</td>
<td>NED</td>
<td>S</td>
<td>NED</td>
<td>NED</td>
<td>81% (224)</td>
<td>NED</td>
<td>77% (224)</td>
<td>60% (224)</td>
<td>100% (224)</td>
<td>NED</td>
<td>99% (224)</td>
<td>99% (224)</td>
<td>100% (224)</td>
<td>99% (224)</td>
<td>99% (224)</td>
</tr>
<tr>
<td>MRSA</td>
<td>0% (128)</td>
<td>NED</td>
<td>R</td>
<td>NED</td>
<td>NED</td>
<td>20% (128)</td>
<td>NED</td>
<td>70% (128)</td>
<td>9% (128)</td>
<td>100% (128)</td>
<td>NED</td>
<td>98% (128)</td>
<td>99% (128)</td>
<td>100% (128)</td>
<td>99% (128)</td>
<td>99% (128)</td>
</tr>
<tr>
<td>Staphylococcus epidermidis</td>
<td>6% (100)</td>
<td>45% (100)</td>
<td>NED</td>
<td>NED</td>
<td>NED</td>
<td>62% (100)</td>
<td>NED</td>
<td>49% (100)</td>
<td>26% (100)</td>
<td>100% (100)</td>
<td>NED</td>
<td>53% (128)</td>
<td>100% (128)</td>
<td>100% (128)</td>
<td>100% (128)</td>
<td>100% (128)</td>
</tr>
<tr>
<td>Enterococcus faecalis</td>
<td>100% (196)</td>
<td>99% (196)</td>
<td>R</td>
<td>82% (196)</td>
<td>93% (196)</td>
<td>R</td>
<td>NED</td>
<td>100% (196)</td>
<td>R</td>
<td>96% (196)</td>
<td>31% (196)</td>
<td>100% (196)</td>
<td>100% (196)</td>
<td>100% (196)</td>
<td>100% (196)</td>
<td>100% (196)</td>
</tr>
<tr>
<td>Group B Streptococcus</td>
<td>100% (35)</td>
<td>S</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>43% (35)</td>
<td>31% (35)</td>
<td>100% (35)</td>
<td>NED</td>
<td>NED</td>
<td>NED</td>
<td>NED</td>
<td>NED</td>
<td>NED</td>
</tr>
</tbody>
</table>
Gulf Coast Region data

<table>
<thead>
<tr>
<th></th>
<th>Amoxicillin + clavanulanic acid</th>
<th>Ampicillin</th>
<th>Ampicillin + Sulbactam</th>
<th>Cefazolin</th>
<th>Ceferoxone</th>
<th>Ceftazidime</th>
<th>Cefepime</th>
<th>Gentamicin</th>
<th>Tobramycin</th>
<th>Amikacin</th>
<th>Imipenem</th>
<th>Ciprofloxacin</th>
<th>Levofloxacin</th>
<th>Trimeth+ Sulfa</th>
<th>Tetracycline</th>
<th>Nitrofurantoin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Escherichia coli</td>
<td></td>
</tr>
<tr>
<td>89% (683)</td>
<td>63% (808)</td>
<td>67% (808)</td>
<td>99% (808)</td>
<td>93% (808)</td>
<td>59% (808)</td>
<td>99% (808)</td>
<td>NED</td>
<td>94% (808)</td>
<td>NED</td>
<td>86% (808)</td>
<td>86% (808)</td>
<td>83% (126)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Klebsiella pneumoniae</td>
<td></td>
<td>R</td>
<td>89% (140)</td>
<td>99% (140)</td>
<td>71% (140)</td>
<td>NED</td>
<td>NED</td>
<td>99% (140)</td>
<td>NED</td>
<td>99% (140)</td>
<td>99% (140)</td>
<td>96% (126)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>98% (121)</td>
<td></td>
<td>R</td>
<td>99% (140)</td>
<td>99% (140)</td>
<td>100% (140)</td>
<td>99% (140)</td>
<td>NED</td>
<td>100% (140)</td>
<td>NED</td>
<td>99% (140)</td>
<td>99% (140)</td>
<td>NED</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Proteus mirabilis</td>
<td></td>
<td>85% (140)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>95% (42)</td>
<td>89% (47)</td>
<td>100% (47)</td>
<td>NED</td>
<td>100% (47)</td>
<td>100% (47)</td>
<td>100% (47)</td>
<td>NED</td>
<td>NED</td>
<td>NED</td>
<td>85% (47)</td>
<td>92% (26)</td>
<td>R</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pseudomonas aeruginosa</td>
<td></td>
<td>R</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R</td>
<td>R</td>
<td>R</td>
<td>98% (53)</td>
<td>R</td>
<td>R</td>
<td>96% (53)</td>
<td>96% (53)</td>
<td>92% (53)</td>
<td>100% (53)</td>
<td>NED</td>
<td>NED</td>
<td>81% (53)</td>
<td>R</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2018 State Antibiograms- SURVEILLANCE DATA ONLY
2018 Alaska State Antibiogram: Southeast Region

The following tables show the proportion of isolates of various bacterial species that tested susceptible to various antibiotics during 2017. These data were aggregated from the antibiograms produced by Alaska hospitals in order to create aggregate regional resistance pattern summaries. These antibiograms can be helpful for health care providers in selecting appropriate “presumptive” antimicrobial therapy for their patients until specific individual laboratory test results are available. They can also be helpful for determining antibiotic stewardship priorities within hospitals and emerging resistance patterns in a broader service area.

- **Methodology:** Individual hospitals prepared their own facility antibiograms, which were shared with the Alaska Section of Epidemiology. Aggregated susceptibility percentages were calculated as the proportion of all tested isolates for the region that were susceptible. Values are only reported when more than one facility provided data for the given species-antibiotic combination. Intrinsic resistance is indicated with an “R”, following the guidance of CLSI document M100-S24.

- **Multi-Drug Resistant Organisms of Note:**
 - Vancomycin-resistant *Staphylococcus aureus* (VRSA): no cases of VRSA have ever been reported in Alaska. VRSA is reportable to the Alaska Section of Epidemiology.
 - Carbapenem-resistant Enterobacteriaceae (CRE): there was one case of CRE reported in a Southeast resident in 2018.

- **Legend:**
 - The top value in each square is the percent of isolates of that species that tested susceptible to that antibiotic.
 - The lower value in each square indicates the number of tested isolates for that bacteria-antibiotic combination.
 - “R” indicates intrinsic resistance to that antibiotic, while “S” indicates definitional susceptibility.
 - “NED” indicates that there was Not Enough Data to report the value: either only one facility reported data for that drug-bug combination or <30 isolates were tested.

- **Limitations:** Individual facilities often use different methods to test for antimicrobial susceptibility, different methods to build their antibiograms, and different antibiotics in their pharmacies. These factors limit interpretation of these data. Additionally, antimicrobial susceptibility testing done in the laboratory does not always predict how effective that drug will be when used to treat a patient. Data are not stratified by infection site, which influences antibiotic choice and effectiveness.

- **Contributing Facilities:** Thanks to the following facilities for providing data in support of this project:
 - Bartlett Regional Hospital
 - Petersburg Medical Center
 - Wrangell Medical Center
 - Sitka Community Hospital
 - SEARHC
 - PeaceHealth Ketchikan Medical Center

2018 State Antibiograms- SURVEILLANCE DATA ONLY
Southeast Region data

<table>
<thead>
<tr>
<th>Species</th>
<th>Penicillin</th>
<th>Ampicillin</th>
<th>Oxacillin</th>
<th>Ampicillin-sulbactam</th>
<th>Ceftriaxone</th>
<th>Ceftazidime</th>
<th>Ceftazidime- kvlanate</th>
<th>Cefoxitin</th>
<th>Gentamicin</th>
<th>Vancomycin</th>
<th>Gent Syn</th>
<th>Trimethoprim-sulfamethoxazole</th>
<th>Linezolid</th>
<th>Tetracycline</th>
<th>Nitrofurantoin</th>
<th>Quinupristin-dalfopristin</th>
<th>Rifampin</th>
<th>Moistflucin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Staphylococcus aureus</td>
<td>16% (297)</td>
<td>0% (90)</td>
<td>62% (863)</td>
<td>59% (90)</td>
<td>59% (90)</td>
<td>65% (593)</td>
<td>65% (593)</td>
<td>100% (90)</td>
<td>79% (863)</td>
<td>46% (863)</td>
<td>100% (322)</td>
<td>97% (863)</td>
<td>99% (96)</td>
<td>99% (863)</td>
<td>100% (90)</td>
<td>100% (90)</td>
<td>99% (90)</td>
<td>46% (90)</td>
</tr>
<tr>
<td>MSSA</td>
<td>26% (53)</td>
<td>0% (53)</td>
<td>S (53)</td>
<td>100% (53)</td>
<td>100% (53)</td>
<td>82% (243)</td>
<td>82% (243)</td>
<td>100% (53)</td>
<td>89% (417)</td>
<td>69% (417)</td>
<td>100% (417)</td>
<td>100% (417)</td>
<td>98% (417)</td>
<td>99% (96)</td>
<td>99% (417)</td>
<td>100% (35)</td>
<td>100% (35)</td>
<td>99% (35)</td>
</tr>
<tr>
<td>MRSA</td>
<td>0% (37)</td>
<td>0% (37)</td>
<td>R (37)</td>
<td>0% (37)</td>
<td>0% (37)</td>
<td>38% (143)</td>
<td>39% (143)</td>
<td>100% (37)</td>
<td>63% (239)</td>
<td>13% (239)</td>
<td>100% (239)</td>
<td>100% (239)</td>
<td>95% (239)</td>
<td>95% (96)</td>
<td>97% (417)</td>
<td>100% (37)</td>
<td>100% (37)</td>
<td>95% (37)</td>
</tr>
<tr>
<td>Staphylococcus epidermidis</td>
<td>NED (48)</td>
<td>71% (48)</td>
<td>71% (48)</td>
<td>67% (43)</td>
<td>23% (43)</td>
<td>100% (48)</td>
<td>NED (48)</td>
</tr>
<tr>
<td>Enterococcus faecalis</td>
<td>NED (54)</td>
<td>100% (54)</td>
<td>R (54)</td>
<td>92% (143)</td>
<td>96% (143)</td>
<td>NED (54)</td>
<td>29% (54)</td>
<td>100% (143)</td>
<td>R (86) (141)</td>
<td>100% (141)</td>
<td>25% (141)</td>
<td>100% (141)</td>
<td>25% (141)</td>
<td>99% (141)</td>
<td>NED (141)</td>
<td>NED (141)</td>
<td>NED (141)</td>
<td>NED (141)</td>
</tr>
<tr>
<td>Coagulase-negative</td>
<td>NED (98)</td>
</tr>
</tbody>
</table>

2018 State Antibiograms- SURVEILLANCE DATA ONLY
<table>
<thead>
<tr>
<th>Species</th>
<th>Amoxicillin+ clavulanic acid</th>
<th>Ampicillin</th>
<th>Ampicillin+Sulbactam</th>
<th>Piperacillin+Tazobactam</th>
<th>Cefazolin</th>
<th>Cefuroxime</th>
<th>Ceftriaxone</th>
<th>Ceftazidime</th>
<th>Cefepime</th>
<th>Cefotaxime</th>
<th>Cefoxitin</th>
<th>Aztreonam</th>
<th>Tobramycin</th>
<th>Amikacin</th>
<th>Ertapenem</th>
<th>Imipenem</th>
<th>Meropenem</th>
<th>Doripenem</th>
<th>Carabapenem</th>
<th>Tigecycline</th>
<th>Nitrofurantoin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Escherichia coli</td>
<td>85% (1077)</td>
<td>62% (1642)</td>
<td>68% (1164)</td>
<td>97% (1642)</td>
<td>93% (1642)</td>
<td>95% (1113)</td>
<td>96% (2642)</td>
<td>96% (194)</td>
<td>95% (1043)</td>
<td>95% (1530)</td>
<td>95% (1642)</td>
<td>99% (1642)</td>
<td>100% (1182)</td>
<td>100% (672)</td>
<td>87% (1642)</td>
<td>87% (1642)</td>
<td>78% (1642)</td>
<td>NED</td>
<td>100% (194)</td>
<td>97% (1530)</td>
<td></td>
</tr>
<tr>
<td>Enterobacter cloacae</td>
<td>65% (34)</td>
<td>NED</td>
<td>89% (34)</td>
<td>100% (37)</td>
<td>NED</td>
<td>100% (37)</td>
<td>100% (37)</td>
<td>NED</td>
<td>97% (37)</td>
<td>NED</td>
<td>100% (37)</td>
<td>100% (37)</td>
<td>NED</td>
<td>100% (37)</td>
<td>100% (37)</td>
<td>100% (46)</td>
<td>NED</td>
<td>46% (37)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Klebsiella pneumoniae</td>
<td>97% (184)</td>
<td>R</td>
<td>93% (244)</td>
<td>98% (31)</td>
<td>NED</td>
<td>R</td>
<td>84% (244)</td>
<td>55% (244)</td>
<td></td>
</tr>
<tr>
<td>Proteus mirabilis</td>
<td>96% (52)</td>
<td>74% (76)</td>
<td>88% (60)</td>
<td>100% (76)</td>
<td>89% (76)</td>
<td>97% (60)</td>
<td>97% (76)</td>
<td>NED</td>
<td>93% (40)</td>
<td>NED</td>
<td>92% (76)</td>
<td>89% (76)</td>
<td>96% (76)</td>
<td>86% (50)</td>
<td>87% (76)</td>
<td>88% (76)</td>
<td>84% (76)</td>
<td>R</td>
<td>R</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pseudomonas aeruginosa</td>
<td>R</td>
<td>R</td>
<td>99% (46)</td>
<td>92% (95)</td>
<td>94% (113)</td>
<td>R</td>
<td>NED</td>
<td>94% (113)</td>
<td>100% (113)</td>
<td>NED</td>
<td>95% (86)</td>
<td>92% (38)</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2018 State Antibiograms- SURVEILLANCE DATA ONLY